Room-temperature sensor based on surface-enhanced Raman spectroscopy.

نویسندگان

  • Kuang-Hsuan Yang
  • Fu-Der Mai
  • Chung-Chin Yu
  • Yu-Chuan Liu
چکیده

As reported in the literature, several factors, such as scattering cross sections, polarisability and wavelength suitability, contribute to increased SERS enhancement. In general, the advantage of surface-enhanced Raman scattering (SERS)-active Ag nanoparticles (NPs) is their higher SERS enhancement over Au NPs because the molar extinction coefficient of the Ag NPs is the highest of its kind among metals. Nevertheless, the corresponding SERS-active hot spots on Au are of inherently greater stability than on Ag. In this work, innovative temperature sensors based on SERS-active Au and Ag substrates prepared by sonoelectrochemical deposition-dissolution cycles (SEDDCs) are first reported. The SERS intensity of the model probe molecules of Rhodamine 6G (R6G) adsorbed on a SERS-active Ag substrate is monotonically increased from 25 to 50 °C. Moreover, this temperature-dependent intensity is linear with a slope of ca. 430 cps per °C between 25 to 45 °C. In addition, the reversibility and reusability of the developed temperature sensors are evaluated after the R6G-adsorbed sensors are alternately exposed to the temperatures of 25 and 45 °C in a sealed chamber. After every five cycles, the SERS spectra of treated substrates were recorded and compared with those of the as-prepared substrates. Experimental results indicate that SERS enhancement capability is mostly reversible based on 90% intensity of the Raman signal being maintained for the SERS-active Au substrate after 25 cycles (only 15 cycles for the Ag substrate).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room Temperature Synthesis of N-doped Urchin-like Rutile TiO2 Nanostructure With Enhanced Photocatalytic Activity Under Sunlight

We report the synthesis of nitrogen-doped urchin-like rutile TiO2 nanostructure at room temperature without further heat treatment. The process was operated through hydrolysis of Ti(OC4H9)4 employing the direct amination of the product. The samples characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy and Brunaue...

متن کامل

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Molecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)

In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...

متن کامل

Room Temperature Operating Nh3 Gas Sensor Based on Tellurium Thin Film

Tellurium thin films were studied for use as ammonia gas sensors operable at room temperature. The films showed a reversible increase in resistance when exposed to ammonia and the response was found to be linear in the range of 0-100 ppm. The interaction of ammonia with tellurium film was investigated using Raman, X-ray photoelectron and impedance spectroscopy techniques. The results of Raman a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 139 20  شماره 

صفحات  -

تاریخ انتشار 2014